### **METHOD OF REJECTING BAD DATA POINTS**

First, a flow chart. Then a table of Thompson's  $\tau$ . Finally, a worked example.



Values of Thompson's t

| n  | t     | n  | t     |
|----|-------|----|-------|
| 3  | 1.150 | 22 | 1.893 |
| 4  | 1.393 | 23 | 1.896 |
| 5  | 1.572 | 24 | 1.899 |
| 6  | 1.656 | 25 | 1.902 |
| 7  | 1.711 | 26 | 1.904 |
| 8  | 1.749 | 27 | 1.906 |
| 9  | 1.777 | 28 | 1.908 |
| 10 | 1.798 | 29 | 1.910 |
| 11 | 1.815 | 30 | 1.911 |
| 12 | 1.829 | 31 | 1.913 |
| 13 | 1.840 | 32 | 1.914 |
| 14 | 1.849 | 33 | 1.916 |
| 15 | 1.858 | 34 | 1.917 |
| 16 | 1.865 | 35 | 1.919 |
| 17 | 1.871 | 36 | 1.920 |
| 18 | 1.876 | 37 | 1.921 |
| 19 | 1.881 | 38 | 1.922 |
| 20 | 1.885 | 39 | 1.923 |
| 21 | 1.889 | 40 | 1.924 |

# **EXAMPLE**

While a vehicle was traveling at an essentially constant speed, a radar gun was used to measure the following speeds (mph):

58, 60, 61, 62, 61, 57, 52, 67, 65, 54, 61, 68, 58, 50, 53, 64, 61, 55, 55, 56, 61, 58, 67, 53, 62, 68, 57, 63, 72, 58

Should you reject any measurements from your analysis? If so, which ones?

## STEP 1: (30 samples)

 $\bar{x} = 59.90$ 

S = 5.352

 $\tau = 1.911$ 

Max. outlier is 72, gives  $\frac{(x-\bar{x})}{S}$  = 2.261 reject this c

reject this one since 2.261 is bigger than 1.911

Min. outlier is 50, gives  $\frac{(x-\bar{x})}{S} = -1.850$ 

## STEP 2: (29 samples)

 $\bar{x} = 59.483$ 

S = 4.925

 $\tau = 1.910$ 

Max. outlier is 68, gives  $\frac{(x-\bar{x})}{S} = 1.729$ 

Min. outlier is 50, gives  $\frac{(x-\bar{x})}{S}$  = -1.925 reject this one since 1.925 is bigger than 1.910

## STEP 3: (28 samples)

 $\bar{x} = 59.821$ 

S = 4.659

 $\tau = 1.908$ 

Max. outlier is 68, gives  $\frac{(x-\bar{x})}{S}$  = 1.755

Min. outlier is 52, gives  $\frac{(x-\bar{x})}{S}$  = -1.679 so don't reject any more

#### FINAL REDUCED DATA SET IS:

58, 60, 61, 62, 61, 57, 52, 67, 65, 54, 61, 68, 58, 53, 64, 61, 55, 55, 56, 61, 58, 67, 53, 62, 68, 57, 63, 58